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I. Introduction 
 

The forensic economics literature hosts a continuing debate about the ap-
propriateness of using historical verses current rates to predict future net dis-
count rates. If the net discount rate series is stationary, which means that 
shocks are transitory and the series reverts to a long-term mean value, esti-
mates based on historical values are reasonable. Alternatively, if the series 
exhibits a unit root, then past observations have questionable predictive value 
and the best predictor of the next period’s discount rate depends mainly on the 
current net discount rate. 

Several analyses have been performed to examine the stationarity of net 
discount rates, and the literature is mixed in its conclusions. Whether the se-
ries is found to be stationary depends on the period and measures observed, as 
well as the type of statistical tests performed. The inherent uncertainty over 
the existence of a unit root does not help the practitioner choose between the 
long-term average and the current net discount rate as an appropriate estima-
tor.  

We derive an alternative estimator of future net discount rates based on 
the statistical properties of the underlying series. The estimator depends on 
both the length of the forecast horizon and the rate at which a time series con-
verges to its equilibrium level in response to a shock (or its degree of persis-
tence). For long forecast horizons, the estimator tends to resemble the long-
term average. For short forecast horizons, the estimator more nearly resembles 
the current value. Similarly, if the degree of persistence is large (it converges 
slowly), the estimator tends to resemble the current rate whereas if persistence 
is low (it converges quickly), the estimator more nearly resembles the long-
term average. In an important special case, where the net discount rate follows 
a first-order autoregressive process, the optimal estimator is a weighted aver-
age of the current net discount rate and the long-term mean of the net discount 
rate process. 

The use of a data-based, weighted average optimal estimator has certain 
advantages. From a theoretical standpoint, the optimal estimator is more effi-
cient than either the long-term average or the current net discount rate. 
Benchmark estimates suggest that the forecast error variance using the opti-
mal estimator is less than half that of the long-term average or current net dis-
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count rate. Examples from historical U.S. data and from recent international 
data show that the optimal estimator would have performed better than the 
extreme alternatives. 

Calculating and justifying the optimal weighting formula in the optimal es-
timator may be problematic in a forensic setting. Therefore, we also consider a 
compromise estimator that equally weights the current and long-term average 
net discount rates. The form of the optimal estimator and the time-series prop-
erties of net discount rates suggest that this compromise estimator is likely to 
be reasonably close to the efficient solution. The empirical examples show that 
the compromise estimator performs well, significantly outperforming both the 
long-term average and the current value. In fact, it matches the performance of 
the optimal estimator. This is good news for practitioners as it provides a sim-
ple, transparent method for predicting future net discount rates.  

Section II defines the issue of mean revision versus a unit root more fully 
and contains a review of existing literature regarding the time series nature of 
net discount rates. In Section III, we derive the optimal estimator. Section IV 
presents a detailed analysis of the efficiency of this estimator for the special 
case where the net discount rate follows a first order autoregressive process. 
Section V demonstrates how the optimal and compromise estimators work in 
practice for historical U.S. data and recent international data. It is followed by 
a conclusion in Section VI. 

 
II. Literature Review 

 
This section begins with a general model reflecting alternative time series 

hypotheses regarding net discount rates. The expected parameter results that 
would support either stationarity of the net discount rate or a unit root are dis-
cussed. Then the literature is reviewed to show conflicting results. 

A basic time series model of the net discount rate can be described as: 
 

 (1) 
t t

n
t t t
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ndr β β ndr β D β DD β t β DD t θ ∆ndr ε− −
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where ndrt is the net discount rate in period t, t

tD  is a dummy variable equal 
to 1 in year t  and zero in all other years, t

tDD  is a second dummy variable 
equal to 1 in the years t  through T and zero before t .1 

If β1 = 1 the process exhibits a unit root. A shock to the process is perma-
nent and the best predictor of the next period’s discount rate is the current dis-
count rate. If β1 ≠ 1, the process is stationary. If the other coefficients are zero, 
the net discount rate follows an iid process with mean β0 and variance 2

εσ . If β4 
≠ 0, the process is trending either upward or downward as indicated by the 
sign of β4 and is trend stationary. 

In equation (1), three special cases are covered by the dummy variables t
tD  

and t
tDD . The first dummy variable reflects a one-time break in the data in 

                                                      
1This is the standard Perron (1997) equation used to test for unit roots augmented with a break in 
the intercept, slope or both. 



 Cushing & Rosenbaum 141 

period t . The second reflects movement to a new mean value starting in period 
t  and continuing thereafter. The combination of t

tDD  and t allows the trend to 
shift staring in period t . If β2 ≠ 0, and the process is stationary, it will return to 
its original mean value. If β3 ≠ 0, and the process is stationary, it will revert to 
a new mean value. If β5 ≠ 0, the net discount rate will have a different trend in 
the years t  through T then it did in the years zero through t .  

A variety of studies have examined the stationarity of net discount rates. 
The studies have used a variety of time periods ranging from the 1950s to 
2000. Observations were either by month, quarter or year. A few studies used 
real net discount rates while most used rates not adjusted for inflation. All but 
one study used interest rates on U.S. Treasury securities; the particular securi-
ties ranged across 91-days, 6-months, 1-year, 3-years and 10-years.2 Wage 
rates included all private non-agricultural workers, production workers or dis-
aggregated sectors of the labor market. Some studies used average hourly 
wages. Others used average weekly earnings. A variety of statistical tech-
niques were used to test for unit roots or breaks in the series. 

An early study that found stationarity of the net discount rate was Haslag, 
et al. (1991). They tested for stationarity of inflation adjusted interest rates 
and wages and found each series to be non-stationary. However, when they 
used the two measures to calculate a real net discount rate, they found that 
series to be stationary. In a companion piece, Haslag, et al. (1994), using two 
separate statistical tests, again rejected the null hypothesis of a unit root. They 
added more observations to the sample and based on their updated statistical 
work concluded that "significant nonlinearities are not present in the net dis-
count ratio and that the variable can be represented as a stationary time se-
ries." (p. 517) 

Gamber and Sorensen (1993) found that when they imposed a shift in the 
mean of the net discount rate series in 1979, they were able to reject the null 
hypothesis of a unit root and concluded that "the optimal forecast for the net 
discount rate is its mean value since the last mean shift." (p. 77) In a second 
paper, Gamber and Sorensen (1994) initially found that the net discount rate 
series was not stationary once serial correlation was eliminated from the re-
siduals. However, they found that "the source of the nonstationarity appears to 
be a one-time shift in the mean of the series." (p. 505) Hays, et al. (2000) ex-
tended Gamber and Sorensen’s (1994) work. They found that net discount 
rates were mean reverting in the long run, but could be persistent in the short 
run. 

Johnson and Gelles (1996) also found differences in means of the net dis-
count rates across pre-1966 and post-1980 periods, but provided little statisti-
cal analysis. Horvath and Sattler (1997), extending Johnson and Gelles, found 
statistical support for a regime change in 1980. Payne, et al. (1999) also sug-
gested that a regime change occurred in the yield on U.S. Treasury securities 
in 1980. Using Person’s unit root test that allows for one pre-specified struc-
tural break in the series, they rejected the null hypothesis of a unit root and 
concluded that "the variability of the net discount rate is largely due to transi-
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tory components. There is a tendency for the respective net discount rates to 
revert back to their long-run mean levels." (p. 222) 

Sen, et al. (2000) eschewed the assumption of a change in the series in 
1980. Instead, they tested for a unit root in a net discount rate series against 
the trend-break stationarity alternative with the break occurring at an un-
known date. Sen, et al. found that "the net discount rate is best characterized 
as a stationary process with a single shift in the mean and that this shift oc-
curred during 1978:3." (p. 29) In a companion piece that covered a longer time 
series, Sen, et al. (2002) found a structural shift in the first quarter of 1981 and 
concluded that "the practitioner should use the average net discount rate over 
the post-break period (1982:2-2000:3) rather than the average over the entire 
period." (p. 97) 

In one of the latest additions to the literature, Braun, et al. (2005) argued 
that standard methods of looking for units roots may err on the side of not 
finding a unit root when there are breaks in the time series. They examined 
the stationarity of net discount rates using the "two-break minimum LM (La-
grange Multiplied) unit root test developed by Lee and Strazicich (2003)." (pp. 
470-71) Using their test, Braun, et al. found two breaks in the net discount 
rate series. The timing of the breaks depended on the financial instrument 
used for the interest rate. Further, using their methodology, they could not re-
ject the null hypothesis of a unit root. Hence, they argued the net discount rate 
series was not mean reverting.  

The literature has also looked at medical net discount rates. As in the pre-
viously discussed literature, whether medical net discount rates are stationary 
depends on the sample and statistical tests used in the analysis.3 

Based on the compendium of this research, it is unclear whether a net dis-
count rate estimator that is derived from a stationary process is any better 
than one that is not. Therefore, a better predictor of the rate may be one that 
accounts for both historical and unit root elements of the series. Such an esti-
mator is proposed in the next section. It is a weighted average of unit root and 
time series properties of the discount rate.  

 
III. The Model 

 
The literature proposes two extremes for estimating future discount rates 

from their past. The random walk estimator uses only the current rate and the 
long-term average uses an average of all past rates. These two extreme estima-
tors correspond to two extreme assumptions on the data: either a pure random 
walk or a pure white noise process. We propose a third estimator that is the 
optimal linear predictor, given current and past observations. In a special, but 
empirically relevant case, the optimal estimator turns out to be a simple 
weighted average of the two extreme estimators.  

We first must be precise about what we mean by "future net discount 
rates." In forensic economic settings, we typically require a single value that 
summarizes the future course of net discount rates. The number is presumably 
some average of net discount rates thought to prevail over the relevant forecast 
                                                      
3See, for example, Ewing, et al. (2001, 2003). 
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horizon. We choose to define the Future Net Discount Rate, FNDR¸ as a geo-
metrically declining weighted average of future net discount rates over a hori-
zon of n periods, 

 

(2) 
1

, 1
0

1 ( )
1

n j
t n t jn j

FNDR ndrγ γ
γ

−

+ +
=

−
= ∑

−
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In equation (2), FNDRt,n is the future net discount rate in period t projected out 
n years and ndrt+1+j is the net discount rate in period t+1+j. The parameter γ 
governs the decay in the weighting scheme. For γ close to unity, we have a 
simple equally weighted average. For γ less than one, closer observations re-
ceive more weight than distant observations. By analogy to the term structure 
of interest rates literature, Shiller (1979), we suggest choosing 1/(1 )Rγ = +  
where R is the long-run mean of the net discount rate process. In any case, our 
results are relatively insensitive to the choice of γ in the neighborhood of unity.  

Although equation (2) is a convenient definition of the FNDR, optimal es-
timators of FNDR turn out to be complicated and messy for all but the simplest 
time-series processes on ndrt. We propose, therefore, to approximate (2) with 
what we define as the Permanent Net Discount Rate, PNDR, an infinite dis-
tributed lag on future net discount rates,  
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Equation (3) expresses the permanent rate as a geometrically declining 

weighted average of all future short-term rates. Large values of λ correspond to 
averages of future net discount rates over a very long horizon whereas small 
values correspond to averages over shorter horizons. We provide a procedure 
for selecting λ in a later part of this section.  

In keeping with the net discount rate literature, we derive an estimator of 
PNDRt that depends only on past values of the net discount rate. We first im-
pose some restrictions on the net discount rate process. Let ndrt have an auto-
regressive representation:  
 
(4) t tB( L)ndr α e= + , 
 
where 2

1 2( ) 1 ....B L L Lβ β= − − − , is a polynomial in the lag operator, L, (de-
fined as Lkndrt=ndrt-k) and et is a fundamental white noise process with a finite 
mean and variance. Also assume that ndrt is of exponential order less than λ-1. 
This allows for a possible unit root in the net discount rate process, but rules 
out explosive growth.  

Following the methodology outlined in Sargent (1987), 
 

1( | , ,.....) tt t t tE PNDR ndr ndr PNDR− =  
 

can be expressed as 
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Alternatively, using summation notation, equation (5) can be expressed as  
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The second term in either equation (5) or (6) will depend, through ,α on the de-
terministic components of the process–the mean and trend.4 In the case of a 
finite order autoregressive process of order k, the first term in (5) or (6) can be 
seen to involve only the current and k-1 lagged values of the net discount rate 
process.  

To make the estimator tPNDR  operational, we must have a procedure for 
selecting λ. We wish to chose λ in a manner to make tPNDR  a good 
approximation to ,t nFNDR , the estimator of the true objective function, shown 
in equation (2). There is one special case in which the approximation can be 
made exact. When the underlying process on net discount rates is a first order 
autoregressive process, 1( )t t tndr ndr eα ρ −= + + , tPNDR  and ,t nFNDR  will be 
of the same form. In particular, the estimate of the true, truncated objective 
function can be shown to be,5 
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and the estimator for the infinite horizon version, (3), can be shown to be  
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Equating coefficients on ndrt in equations (7) and (8) implicitly defines λ as a 
function of ρ, γ and n: 
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Where 

                                                      
4Note that if the net discount rate process is stationary, we have, i
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= − ∑ , where µ is the 

(unconditional) mean of the net discount rate process. 
5Note that equations (7) and (8) are derived in Appendix 2. 
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(1 )(1 )

n

n
γ γρ
γρ γ

− −
Ω =

− −
. 

 
Our strategy is to perform a preliminary regression that approximates the 

net discount rate as a first-order autoregressive process. We then use the esti-
mate of ρ from the preliminary regression to estimate λ. If the process used in 
the forecast is also first-order autoregressive, the procedure is exact. If the 
time-series process used to perform the forecast is of higher order, then using 
equation (5) with λ estimated from equation (10) is likely to provide a good ap-
proximation. Appendix 1 provides tables that give solutions for λ as functions 
of n, ρ and γ from equation (9). 
 

IV. A Special Case 
 

To better understand the optimal estimator of the previous section and to 
provide some evidence of its relative superiority as compared to the random 
walk or long-term estimators, it is useful to examine an important special case. 
Suppose ndrt follows a stationary first-order autoregressive process with AR 
parameter, ρ: 

 
(11) t t 1 tndr α ρndr e−= + + . 
 
Here, equations (6) and (7) collapse to 
 
(12) (1 ) 1
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where /(1 )µ α ρ= −  is the unconditional mean of ndrt.  

 
Equation (12) has a simple interpretation as the weighted average of the 

current and the mean levels of ndrt. As λ approaches unity, which implies a 
very long time horizon with all future net discount rates weighted equally, the 
optimal predictor is simply the mean of ndr, µ. In contrast, when the appropri-
ate time horizon is shorter, λ is small and the current value of ndrt receives 
more weight. However, because λ is strictly less than one, the optimal weights 
on the current value of ndrt and the mean, µ, also depend on the magnitude of 
the autoregressive parameter, ρ. As ρ approaches unity, the case of a pure ran-
dom walk, the optimal predictor contains only the current value of ndrt. In con-
trast, as ρ approaches zero, the case of a pure white noise process, the optimal 
predictor contains only the mean, µ. 
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Table 1 
Optimal Forecast Weight on Current ndr for the AR(1) Model 

 
Forecast Horizon First-Order Autocorrelation Coefficient: ρ 

        
λ 0.50 0.60 0.70 0.80 0.90 0.95 

0.50 0.333 0.429 0.538 0.667 0.818 0.905 
0.55 0.310 0.403 0.512 0.643 0.802 0.895 
0.60 0.286 0.375 0.483 0.615 0.783 0.884 
0.65 0.259 0.344 0.450 0.583 0.759 0.869 
0.70 0.231 0.310 0.412 0.545 0.730 0.851 
0.75 0.200 0.273 0.368 0.500 0.692 0.826 
0.80 0.167 0.231 0.318 0.444 0.643 0.792 
0.85 0.130 0.184 0.259 0.375 0.574 0.740 
0.90 0.091 0.130 0.189 0.286 0.474 0.655 
0.95 0.048 0.070 0.104 0.167 0.310 0.487 
0.98 0.024 0.036 0.055 0.091 0.184 0.322 

 
 
 

To appreciate the relative weights, Table 1 gives the optimal weights on 
the current value of ndrt, the first term in equation (12), for given values of the 
autocorrelation coefficient, ρ, and the parameter, λ. The parameter λ is labeled 
"forecast horizon" because, although λ depends in part on the underlying decay 
parameter, γ and the autocorrelation parameter, ρ, it depends mainly on the 
forecast horizon, n.6 When λ = .70 and ρ = .70, the weight on the current rate is 
0.412 and the weight on the mean is .588. Note that for any time horizon, λ, as 
the degree of autocorrelation increases (higher values of ρ), the weight on the 
current value increases. For a given degree of autocorrelation, ρ, as the time 
horizon increases, λ increases, the weight on the current value decreases. 

To quantify the gains from using the optimal estimator rather than the 
long-term average or random walk estimators, we calculate the asymptotic 
relative efficiency of the optimal estimator using a mean squared error crite-
rion. A large ratio would indicate that the optimal estimator has a much 
smaller mean squared forecast error compared to the alternative and hence is 
relatively more efficient. The efficiency of the optimal estimator relative to the 
long-term average estimator can be shown to be: 
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6The exact correspondence between λ and the forecast horizon, n is given in Tables A-1, A-2 and A-
3 in Appendix 1. 
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If ρ is small and λ is large, that is, if the series is only mildly autocorrelated 
and the forecast horizon is large, the relative efficiency will be only slightly 
greater than one, so the efficiency gain from using the optimal estimator would 
be slight. In contrast, for moderate values of λ and large values of ρ, the rela-
tive efficiency can be quite large. In other words, if net discount rates are 
highly autocorrelated and the forecast horizon is moderate, using the optimal 
estimator would yield considerable gains. Table 2 presents the relative effi-
ciency gain by using the optimal estimator for a variety of values for λ and ρ.  

What do these results imply about the relative asymptotic efficiency of the 
optimal estimator? Consider a benchmark case: ρ = .70, γ = .98 and a forecast 
horizon of five years. From Appendix 1, Table A-1 (or directly from equation 
(9)) these benchmark figures suggest a value for λ of about .70. From Table 1, 
(or directly from equation (12)) we obtain weights of the current and long-term 
average of .412 and .588, respectively. That is, the optimal estimator gives ap-
proximately equal weight to the random walk and long-term average estima-
tor. From Table 2 (or directly from equation (13)) we see that the MSE of the 
long-term average is 1.49 times that of the optimal estimator.  

The asymptotic efficiency of the optimal estimator relative to the random 
walk estimator can be expressed as:  
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Table 2 
Efficiency of the Optimal Estimator Relative to the Long-Term 

Average Estimator in the AR(1) Model 
 

Forecast Horizon First order Autocorrelation Coefficient: ρ 
        

λ 0.50 0.60 0.70 0.80 0.90 0.95 
0.50 1.250 1.422 1.721 2.333 4.197 7.942 
0.55 1.233 1.392 1.670 2.240 3.974 7.456 
0.60 1.213 1.360 1.615 2.138 3.728 6.924 
0.65 1.193 1.325 1.555 2.027 3.462 6.346 
0.70 1.170 1.287 1.490 1.907 3.174 5.721 
0.75 1.146 1.246 1.420 1.778 2.865 5.050 
0.80 1.120 1.203 1.346 1.640 2.535 4.332 
0.85 1.093 1.156 1.267 1.493 2.183 3.569 
0.90 1.063 1.107 1.183 1.338 1.810 2.759 
0.95 1.033 1.055 1.094 1.173 1.416 1.903 
0.98 1.016 1.028 1.047 1.088 1.210 1.457 
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Table 3 
Efficiency of the Optimal Estimator Relative to the Random Walk 

Estimator in the AR(1) Model 
 

Forecast Horizon First order Autocorrelation Coefficient: ρ 
        

λ 0.50 0.60 0.70 0.80 0.90 0.95 
0.50 2.000 1.750 1.529 1.333 1.158 1.077 
0.55 2.148 1.861 1.608 1.383 1.181 1.088 
0.60 2.333 2.000 1.706 1.444 1.211 1.103 
0.65 2.571 2.179 1.832 1.524 1.248 1.121 
0.70 2.889 2.417 2.000 1.630 1.298 1.145 
0.75 3.333 2.750 2.235 1.778 1.368 1.179 
0.80 4.000 3.250 2.588 2.000 1.474 1.231 
0.85 5.111 4.083 3.176 2.370 1.649 1.316 
0.90 7.333 5.750 4.353 3.111 2.000 1.487 
0.95 14.000 10.750 7.882 5.333 3.053 2.000 
0.98 27.333 20.750 14.941 9.778 5.158 3.026 

 
 
 

For shorter time horizons and for highly autocorrelated net discount rate 
processes, the optimal estimator is marginally more efficient. For longer hori-
zons, and for weakly autocorrelated series, the gain in efficiency can be large. 
Table 3 shows the relative efficiency gain by using the optimal estimator for a 
variety of values for λ and ρ. In our benchmark case, we see that the mean 
forecast error variance of the random walk estimator is twice that of the opti-
mal estimator. Tables 2 and 3 suggest that there are potentially large gains in 
efficiency from using the optimal estimator.  
 

V. Empirical Example 
  

In this section we present evidence that our proposed estimator would 
have, on average, worked well for the last 40 years of experience in the U.S. 
and it would have, on average, worked well for a wide sample of countries over 
the 1990s. The theoretical results of the previous section suggest that the op-
timal estimator will outperform the alternatives, but those results rely on the 
assumptions that the net discount rate process follows a stationary first order 
autoregressive process with known parameters. In practice, the parameters 
must be estimated and the process may not be stationary. It is therefore of in-
terest to see how our estimator would have worked when applied to actual net 
discount rate processes.  
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We use as our objective function the five-period-ahead average net discount 
rate,7 

 

(15) 
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We choose to work with annual data on net discount rates. The net discount 
rate is defined as ndrt =it – gt, where it is the one-year U.S. treasury bill rate 
and gt is the annual growth rate of average hourly earnings in manufacturing.8 
Data on these variables are available from 1954 to 2005. We recursively com-
pute a series of forecasts of the objective function, (15), for each of the years 
from 1960 to 2000.  

Two versions of the long-term average estimator are considered. The first 
uses the average over the entire sample, from 1954 to the forecast date. The 
second uses only the average over the previous 10 years prior to the forecast 
date. The latter reflects the suggestion by Gamber and Sorensen (1994) as well 
as others that, due to breaks in the data, the long-term average should reflect 
only more recent observations. The random walk estimator is simply the actual 
net discount rate at the forecast date.  

To compute the optimal estimator, we first examined the time series prop-
erties of the net discount rate. Standard criteria (Akaike, Hannan-Quinn, 
Schwartz) suggest that the data follow a first order autoregressive process. We 
thus compute the optimal estimator from equation (12). We obtain the value of 
the weighting parameter, λ, from equation (10) using γ = .98 (reflecting the 
long-term average net discount rate of approximately .02.) and n = 5 (reflecting 
the five-year horizon.)9  

We also evaluate the performance of a simple compromise estimator that is 
an equally weighted average of the current and long-term net discount rates. 
This compromise estimator should be asymptotically less efficient, but it has 
the advantage of simplicity and reflects the essential concept of the optimal 
estimator: a blending of the two extreme estimators. Further, the theoretical 
considerations developed in the previous section suggest that an equally 
weighted average may be close to optimal. (See Table 1) 

Our five estimators can each be viewed as weighted averages of the histori-
cal data. The long-term average places equal weight on all historical values 
whereas the 10-year average places equal weight on only the last 10 years. The 
random walk estimator places all weight on the current value. The compromise 
estimator, being a simple average of the random walk and long-term average 
places half of its weight on the current value and the rest on all of the observa-

                                                      
7The choice of a five-year time horizon represents a compromise between the desire to use the most 
recent experience and the desire to look at long period prediction.  
8Defining the net discount rate as (1+i)/(1+g)–1 yields very similar conclusions. The one-year treas-
ury bill rate is taken to be the rate reported in January of each year. The growth rate of earning is 
measured as a December to December growth rate. 
9Note that when calculating the optimal estimator we use the entire sample up to the forecast 
data. As such the optimal estimator is a combination of the current value and long-term average 
rather than the 10-year average.  
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tions. The optimal estimator is also a weighted average of the random walk 
and long-term average estimators, but the weights are determined by the time-
series properties of the net discount rate. Figures 1 to 5 give the predictions of 
each estimation strategy along with the realization of the future net discount 
rate, FNDR. 
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Figure 1. Optimal Estimator vs. Realized Future Net Discount Rates 
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Figure 2. Long-Term Average vs. Realized Future Net Discount Rates 
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Figure 3. 10-Year Average vs. Realized Future Net Discount Rates 
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Figure 4. Current Interest Rate vs. Realized Future Net Discount Rates 
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Figure 5. Compromise (Weighted Average) Estimator vs. Realized 
Future Net Discount Rates 

 
 
 

The compromise estimator appears (to us) to track best, but, because it is 
difficult to discern this from these graphs, we quantify the comparisons ac-
cording to their mean squared prediction errors (MSPEs). The MSPE is defined 
as  
 

(16) 2
,

1

1 ( )
m

t t n
t

MSPE PNDR FNDR
m =

= −∑ , 

 
where m is the sample period of interest, PNDR  is the particular net discount 
rate estimator and ,t nFNDR  the weighted average of future net discount rates 
over the subsequent n periods (the realized future net discount rate.) 

Mean square prediction errors are shown in Table 4. The optimal estimator 
performed better than all three of the traditional estimators in the 1960s and 
overall. The long-term average outperformed the optimal estimator in the 
1970s and 1990s, but was worse overall. The 10-year average performed worse 
than the optimal estimator in all sub-periods and was also worse overall. The 
random walk estimator beat the optimal estimator in the 1980s, but was 
slightly worse overall. 
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Table 4 
Mean Squared Prediction Error Post-War U.S. Data 

 
 Estimator 
 Current 

Value 
Long-Term 

Average 
10-Year 
Average 

Optimal 
Estimator 

Compromise 
Estimator 

1960-1969 1.580 0.899 1.111 0.869 1.134 
1970-1979 14.706 10.964 13.338 10.989 10.138 
1980-1989 6.311 22.197 15.907 13.056 4.466 
1990-2000 3.675 1.347 4.895 1.386 2.224 
1960-2000 6.498 8.669 8.717 6.449 4.435 

 
 
 

The compromise estimator performed surprisingly well, beating our opti-
mal estimator in the 1970s, 1980s and overall. The compromise estimator per-
formed better than the random walk estimator in all four periods and overall. 
The compromise estimator performed better than the long-term average in the 
1970s and 1980s and performed better over the entire time span. It performed 
better than the 10-year average in all periods expect the 1960s. 

Although these results are suggestive, the conclusions from Table 4 should 
not be overstated. The U.S. data contains only eight non-overlapping five-year 
intervals and even these non-overlapping intervals cannot be considered inde-
pendent observations. The relative superiority of any of these estimators over a 
single, short time span can easily be attributed to pure chance. Examining the 
performance over longer time spans would be desirable, but U.S. data for early 
periods may be of limited relevance for evaluating current prediction perform-
ance.10  

To extend our sample, we examine how our estimators would have worked 
in a sample 13 countries over the 1990s. The 13 countries are chosen based on 
the availability of short-term interest rate and wage-rate data in the Interna-
tional Financial Statistics database. We apply the same estimation strategy to 
each of these countries, modeling the net discount rate process as a first-order 
autoregressive process.11  

Table 5 shows the mean squared prediction error for each estimator across 
the 13 countries. The current value performed best in two cases, the long-term 
average in one, the 10-year average in one, the optimal estimator in two and 
the compromise estimator worked best in the remaining seven. In pair-wise 
comparisons, the optimal estimator outperformed the random walk estimator 
in all countries but Greece, Italy and the U.K. The optimal estimator has a 
lower MSPE than the long-term average in all countries but Korea, and a 
lower MSPE than the 10-year average in all countries but Germany, Italy, 
Sweden and the U.K. Overall, the optimal estimator had an average MSE sig-
nificantly lower than any of the traditional estimators.  
                                                      
10The imposition and relaxation of wage and price controls during the 1940’s imparts wide year-to-
year swings in hourly earnings data. 
11For 11 of these countries, quarterly data were available. For these countries, we used the interest 
rate reported in the first quarter and measured the annual growth rate of wages as the first-quar-
ter to first-quarter growth rate. For the remaining two countries, Greece and Norway, we simply 
take the annual interest rate given and for wage growth use the year-over-year average. The data 
are described more fully in Appendix 1, Table A-4. 
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Table 5 
Mean Squared Prediction Error 1990-2000 International Data 

 
 Estimator 
 Current 

Value 
Long-Term 

Average 
Ten-Year 
Average 

Optimal 
Estimator 

Compromise 
Estimator 

Australia 8.60 8.11 13.92 1.79 1.38 
Canada 3.16 5.36 5.04 1.29 1.15 
Finland 18.70 12.87 20.46 9.34 8.08 
France 7.29 21.62 15.69 5.22 4.82 
Germany 8.20 9.05 0.53 5.52 4.69 
Greece 16.14 77.01 38.52 26.82 23.51 
Italy 7.16 37.24 9.82 24.45 10.02 
Japan 4.05 1.24 3.02 1.18 1.75 
Korea 78.52 19.41 35.82 22.05 34.01 
Netherlands 4.31 12.23 7.72 2.46 2.85 
Norway 10.23 12.32 8.83 6.26 4.13 
Sweden 9.11 7.53 5.47 6.21 4.36 
U. K. 3.67 8.55 3.10 4.10 1.67 
      
Average 13.78 17.89 12.92 8.98 7.88 
 
 
 

Table 6 
Relative Mean Squared Prediction Error 1990-2000 International Data 

 
 Estimator 
 Current 

Value 
Long-Term 

Average 
Ten-Year 
Average 

Optimal 
Estimator 

Compromise 
Estimator 

Australia 4.80 4.53 7.78 1.00 0.77 
Canada 2.45 4.16 3.90 1.00 0.89 
Finland 2.00 1.38 2.19 1.00 0.87 
France 1.40 4.14 3.01 1.00 0.92 
Germany 1.49 1.64 0.10 1.00 0.85 
Greece 0.60 2.87 1.44 1.00 0.88 
Italy 0.29 1.52 0.40 1.00 0.41 
Japan 3.42 1.05 2.55 1.00 1.48 
Korea 3.56 0.88 1.62 1.00 1.54 
Netherlands 1.75 4.97 3.14 1.00 1.16 
Norway 1.63 1.97 1.41 1.00 0.66 
Sweden 1.47 1.21 0.88 1.00 0.70 
U. K. 0.90 2.09 0.76 1.00 0.41 
      
Average 1.98 2.49 2.24 1.00 0.89 
 
 
 

The compromise estimator performed surprisingly well. It had a lower 
MSPE than the random walk estimator in all countries but Greece and Italy 
and out-performed the long-term average in every country but Japan and Ko-
rea. It performed better than the 10-year average in all countries but Germany 
and Italy. The MSPE for the compromise estimator was lower than the optimal 
estimator in all but three of the countries and had a slightly lower average 
MSPE across all countries.  
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Differences in the volatility of net discount rates across countries compli-
cate the comparisons of relative efficiency. To ease the comparison, Table 6 
presents each estimator’s MSPE relative to the mean squared error for the op-
timal estimator. This corrects for different scales across countries. Overall, the 
long-term average and 10-year average estimators had MSPEs at least twice 
as large as that observed for the optimal estimator. The random walk estima-
tor had a smaller divergence from the optimal estimator; but even here the 
relative MSPE was twice that of the optimal estimator. Again, the simple com-
promise estimator was seen to perform surprisingly well, outperforming the 
optimal estimator in average relative mean squared prediction error.  
 

V. Conclusion 
  

There is an ongoing debate in forensic economics about the time series na-
ture of net discount rates. The debate has implications for the appropriateness 
of estimators to use in predicting future net discount rates. If the net discount 
rate series is stationary, estimates based on historic values are reasonable. Al-
ternatively, if the series exhibits a unit root, then the best predictor of the next 
period’s discount rate depends mainly on the current net discount rate. 

We derive a general, optimal estimator of future net discount rates that 
depends on the forecast horizon and the time-series properties of the net dis-
count rate process. In the important and empirically relevant special case 
where the net discount rate follows a first-order autoregressive process, the 
optimal estimator is a simple weighted average of two unit root and long-term 
average estimators. The weights depend on both the length of the forecast ho-
rizon and the degree of autocorrelation in the net discount rate process. For 
short forecast horizons and when net discount rates are close to a random 
walk, the optimal estimator is weighted more heavily toward the current 
value. For long forecast horizons and when the degree of autocorrelation is low, 
the estimator is weighted more heavily toward the long-term average.  

We then compare the asymptotic performance of the optimal estimator to 
the random walk and long-term average estimators. Our benchmark estimates 
suggest that the mean squared forecast error using either the long-term aver-
age or the current rate can be almost twice that of the optimal estimator.  

Historical U.S. and international net discount rates are then used to com-
pare the actual performance of the optimal and extreme estimators. For the 
U.S. data, the optimal estimator generally outperformed the traditional esti-
mators. These results held true across a sample of 13 developed countries. On 
average the optimal estimator appears approximately twice as efficient as ei-
ther the current value or long-term average. 

Because calculating and justifying the weights in the optimal estimator 
can be problematic, we also suggest a compromise estimator that equally 
weights the current and long-term average net discount rates. Empirical re-
sults show that this compromise estimator outperforms either the long-term 
average or the current value and performs very much like the optimal estima-
tor. This may be an appealing solution that has both theoretical support and 
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can be easily implemented and justified in a forensic setting. Sometimes the 
"truth" actually does lie somewhere between the two extremes.  
 
 

References 
 
Braun, B., J. Lee, and M.C. Strazicich, Historical Net Discount Rates and Future Eco-

nomic Losses: Refuting the Common Practice, Economic Foundations of Injury and 
Death Damages, edited by Kaufman, R. T., J. D. Rodgers, and G. D. Martin, Edward 
Elgar Publishing Ltd., 2005, 468-491. 

Ewing, B. T., J. T. Payne, and M. J. Piette, "Time Series Behavior of Medical Cost Net 
Discount Rates: Implications for Total Offsetting and Forecasting," Journal of Foren-
sic Economics, Winter 2001, 14(1), 53-61.  

_______, _______, and _______, "Forecasting Medical Net Discount Rates," Journal of 
Risk and Insurance, 2003, 70(1), 85-95. 

Gamber, E. N., and R. L. Sorensen, "On Testing for the Stability of the Net Discount 
Rate," Journal of Forensic Economics, 1993, 7, 9-79. 

_______, and _______, "Are Net Discount Rates Stationary? The Implications for Present 
Value Calculations: Comment," Journal of Risk and Insurance, 1994, 61, 503-512. 

Haslag, J. H., M. Nieswiadomy, and D.J. Slottje, "Are Net Discount Rates Stationary? 
The Implications for Present Value Calculations," Journal of Risk and Insurance, 
1991, 58, 505-512.  

_______, _______, and _______, "Are Net Discount Rates Stationary? Some Further Evi-
dence," Journal of Risk and Insurance, 1994, 61(3), 513-518. 

Hays, P., M. Schreiber, J.E. Payne, B. T. Ewing and M. J. Piette, "Are Net Discount 
Ratios Stationary? Evidence of Mean Reversion and Persistence," Journal of Risk and 
Insurance, 2000, 67(3), 439-449. 

Horvath, P. A., and E. L. Sattler, "Calculating Net Discount Rates–It’s Time to Recog-
nize Structural Changes: A Comment and Extension," Journal of Forensic Economics, 
1997, 10, 327-332. 

Johnson, W. D., and G. M. Gelles, "Calculating Net Discount Rates Rates–It’s Time to 
Recognize Structural Change," Journal of Forensic Economics, 1996, 9, 119-129. 

Lee, J., and M. Strazicich, "Minimum LM Unit Root Test with Two Structural Breaks," 
The Review of Economics and Statistics, 2003, 85(4), 1082-1089. 

Payne, J. E., B. T. Ewing and M. J. Piette, "An Inquiry Into the Time Series Properties 
of Net Discount Rates," Journal of Forensic Economics, 1999, 12(3), 215-223. 

_______, _______, and _______, "Mean Reversion in Net Discount Rates," Journal of Le-
gal Economics, Spring/Summer 1999, 9(1), 69-80. 

Perron, P., "Further Evidence on Breaking Trend Functions in Macroeconomic Vari-
ables," Journal of Econometrics, October 1997, 80(2), 355-85. 

Sargent, T. J., Macroeconomic Theory, Orlando, FL: Academic Press Inc., 1987. 
 Sen, A., G. M. Gelles and W. D. Johnson, "A Further Examination Regarding the Sta-

bility of the Net Discount Rate," Journal of Forensic Economics, Winter 2000, 13(1), 
23-28. 

_______, _______, and _______, "Structural Instability in the Net Discount Rate Series 
Based on High Grade Municipal Bond Yields," Journal of Legal Economics, Fall 2002, 
12(2), 87-100. 

Shiller, R. J., "The Volatility of Long-Term Interest Rates and Expectations Models of 
the Term Structure," Journal of Political Economy, Dec.1979, 87(6), 1190-1219. 

 



 Cushing & Rosenbaum 157 

 Appendix 1 
 
Equation (9) in the body of the paper and manipulated here as equation (A1-1), ex-

presses λ as a function of ρ, n and γ: 
 

(A1-1) 
n

n
ρ(1 λ ) ρ(1 γ )(1 ( γρ) ) .
1 λρ (1 γρ)(1 γ )

− − −
=

− − −
 

 
The following three tables solve for λ as a function of various values of ρ, n and γ. Inter-
estingly, the tables also show that λ is not very sensitive to the choice of R  and γ. 
 
 
 

Table A-1 
Value of λ for γ = 98 

 
Periods (n) First order autocorrelation coefficient: ρ 

       
   .50  .60  .70  .80  .90  .95 
2 0.40 0.38 0.37 0.35 0.34 0.34 
3 0.58 0.57 0.55 0.53 0.51 0.50 
4 0.69 0.67 0.65 0.63 0.62 0.61 
5 0.75 0.74 0.72 0.70 0.68 0.67 
10 0.88 0.87 0.87 0.85 0.84 0.82 
15 0.92 0.92 0.91 0.90 0.89 0.88 
20 0.94 0.94 0.93 0.93 0.92 0.91 
30 0.95 0.95 0.95 0.95 0.95 0.94 
50 0.97 0.97 0.97 0.97 0.97 0.96 

 
 
 

Table A-2 
Value of λ for γ = 1.0 

 
Periods (n) First order autocorrelation coefficient: ρ 

       
 .50 .60 .70 .80 .90 .95 
2 0.40 0.38 0.37 0.36 0.34 0.34 
3 0.59 0.57 0.55 0.53 0.52 0.51 
4 0.69 0.68 0.66 0.64 0.62 0.61 
5 0.76 0.75 0.73 0.71 0.69 0.68 
10 0.89 0.88 0.87 0.86 0.84 0.83 
15 0.93 0.93 0.92 0.91 0.90 0.89 
20 0.95 0.95 0.94 0.94 0.93 0.92 
30 0.97 0.96 0.96 0.96 0.96 0.95 
50 0.98 0.98 0.98 0.98 0.98 0.97 
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Table A-3 
Value of λ for γ = .96 

 

Periods (n) First order autocorrelation coefficient: ρ 
       
 .50 .60 .70 .80 .90 .95 
2 0.39 0.38 0.36 0.35 0.34 0.33 
3 0.58 0.56 0.54 0.53 0.51 0.50 
4 0.68 0.67 0.65 0.63 0.61 0.60 
5 0.75 0.73 0.72 0.70 0.68 0.67 
10 0.87 0.87 0.86 0.85 0.83 0.82 
15 0.91 0.91 0.90 0.90 0.88 0.87 
20 0.93 0.92 0.92 0.92 0.91 0.90 
30 0.94 0.94 0.94 0.94 0.93 0.93 
50 0.95 0.95 0.95 0.95 0.95 0.95 

 
 
 
Table A-4 presents the data used in the international comparisons used in the empirical 
section.  
 
 
 

Table A-4 
Description of Data used for International Comparisons 

 
 
Country 

Short Term Interest 
Rate Measure Wage or Earnings Measure 

Data Range 
 

Australia Money Market 
Rate 

Average Weekly 
Earnings 

Quarterly 
1967:1-2005:4 

Canada Treasury Bill 
Rate 

Average Hourly 
Earnings (Man.) 

Quarterly 
1960:1-2005:4 

Finland Money Market 
Rate 

Hourly Earning 
Index 

Quarterly 
1960:1-2005:4 

France Call Money 
Rate 

Labor Costs 
Index 

Quarterly 
1960:1-2005:4 

Germany Call Money 
Rate 

Hourly Earnings 
Index 

Quarterly 
1962:1-2005:4 

Greece Bank Deposit 
Rates 

Average Monthly 
Earnings 

Annual 
1962-2005 

Italy Treasury Bill 
Rate 

Contractual Wage 
Rates 

Quarterly 
1960:1-2005:4 

Japan Call Money 
Rate 

Average Monthly 
Earnings 

Quarterly 
1960:1-2005:4 

Korea Money Market 
Rate 

Average Monthly 
Earnings 

Quarterly 
1960:1-2005:4 

Netherlands Call Money 
Rate 

Average Hourly 
Wage Rates 

Quarterly 
1960:1-2005:4 

Norway Central Bank Discount 
Rate 

Average Monthly 
Earnings 

Annual 
1962-2005 

Sweden Bank Deposit 
Rate 

Average Hourly 
Earning (Man.) 

Quarterly 
1961:1-2005:4 

U. K. Treasure Bill 
Rate 

Average Monthly 
Earnings 

Quarterly 
1963:1-2005:4 
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 Appendix 2 
 

We seek an expression for the predictor of the true truncated objective function, 
 

(A2-1) 
n 1 j

t,n t 1 jn j 0

1 γFNDR γ ( ndr )
1 γ

−
+ +

=

−
= ∑

−
, 

 
where the hat denotes the (least squares) prediction based on information on net dis-
count rates at time t and before.  

We assume net discount rates follow a first-order process, 
  
(A2-2) t t 1 tndr α ρndr e−= + + , 
 
with known coefficients. The optimal predictor of net discount rates at time t+1+j is 
given by, 
 

(A2-3)  
j 1

j 1
t 1 j t

1 ρndr α ρ ndr
1 ρ

+
+

+ +
⎡ ⎤−

= +⎢ ⎥
−⎣ ⎦

. 

 
Substituting (A2-3) into (A2-1) gives, 
 

(A2-4)  
j 1n 1 j j 1

t,n tn j 0

1 γ 1 ρFNDR γ α ρ ndr
1 ρ1 γ

+− +

=

⎡ ⎤− −
= +∑ ⎢ ⎥

−− ⎣ ⎦
. 

 
Solving the geometric sums in (A2-4) gives, 

 

(A2-5)  
n n n

t,n tn
1 γ ρ(1 ( γρ) ) α (1 γ ) ρα 1 ( γρ)FNDR ndr

1 γρ 1 ρ 1 γ 1 ρ 1 γρ1 γ
⎡ ⎤− − − −

= + −⎢ ⎥
− − − − −− ⎣ ⎦

. 

  
Rearranging and simplifying (A2-5) gives, 

 

(A2-6) 
n n

t,n tn n
ρ(1 γ )(1 ( γρ) ) 1 ρ(1 γ )(1 ( γρ) )FNDR ndr α

1 ρ(1 γρ)(1 γ ) (1 ρ)(1 γρ)(1 γ )
⎛ ⎞− − − −

= + −⎜ ⎟⎜ ⎟−− − − − −⎝ ⎠
,  

 
which is equation (7) in the text. 

Now, letting n go to infinity, (assuming γ 1<  and ρ 1< ), we have 
 

(A2-7)  t ,n t
ρ(1 γ ) 1 ρ(1 γ )FNDR ndr α
(1 γρ) 1 ρ (1 ρ)(1 γρ)

− ⎛ − ⎞
= + −⎜ ⎟− − − −⎝ ⎠

. 

 
Simplifying (A2-7) gives, 
 

(A2-8) t t
ρ(1 λ ) 1PNDR ndr α
1 ρλ 1 ρλ

−
= +

− −
, 

 
which is equation (8) in the text. 


